
My Favorite Editor Anywhere

Hayco de Jong and Taeke Kooiker

CWI, Department of Software Engineering
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

(jong|kooiker)@cwi.nl

Abstract. How can off-the-shelf editors be reused in applications that need ma-
ture editing support? We describe our editor multiplexer which enables interac-
tive, application guided editing sessions using GNU Emacs and Vim. At a cost of
less than 1 KLOC of editor-specific glue code, both IDE builders and users ben-
efit. Rapid integration of existing editors reduces application development cost,
and users are not confronted with yet another foreign editor with its own learning
curve.

1 Introduction

Many applications such as email clients, instant messengers, web browsers, and pro-
gramming environments provide editing facilities. Full fletched, off-the-shelf editing
solutions such as GNU Emacs [1] and Vim [2] are readily available, but many applica-
tion developers still choose to write their own editing software. Some utility libraries
(e.g. Java’s JFC/Swing library) contain partial solutions in the form of reusable editing
widgets. Still, developing and extending your own editor to encompass the feature rich-
ness common in mature text editors is far from a rapid software engineering exercise.

Offering a single built-in editor obviously also limits the user to this editor. This
poses no problem as long as the editing sessions are brief, e.g. during login or pass-
word entry. However, when the editor is used for lengthy (programming) sessions, be-
ing forced to use the keybindings dictated by an editor that is not your personal favorite
can easily lead to frustration.

This paper describes how we reuse and integrate existing editors in a programming
environment. Although our implementation is based on needs we have in our own envi-
ronment, both the idea and most of the implementation can carry over to other projects.
Basically, projects that need editing support for structured documents and where inter-
activity with these editing sessions is desirable, could benefit from the architecture we
describe.

The structure of this paper is as follows. This section continues with some back-
ground, motivation and discussion of related work. Section 2 describes how we coor-
dinate simultaneous editing sessions, and we show the architecture used to deal with
various editors. Section 3 describes some of the implementation details of the archi-
tecture: the MULTIPLEXER which orchestrates simultaneous editing sessions and the
glue that is needed between the MULTIPLEXER and the various editor instances. We
conclude with a summary of our contribution and a discussion of ideas for future work
in Section 4.



1.1 Background

The ASF+SDF Meta-Environment [3,4] is a programming environment generator: given
a language definition consisting of a syntax definition (grammar) and tool descriptions
(using rewrite rules) a language specific environment is generated. Figure 1 shows a
screenshot of the ASF+SDF Meta-Environment. A language definition typically in-
cludes such features as pretty printing, type checking, analysis, transformation and ex-
ecution of programs in the target language. The ASF+SDF Meta-Environment is used
to create tools for domain-specific languages and for the analysis and transformation of
software systems.

Fig. 1. GNU Emacs and Vim used simultaneously by an IDE.

The ASF+SDF Meta-Environment is used in several academic [5], industrial [6],
and financial projects [7,8]. Presently, the ASF+SDF Meta-Environment is intensively
used in the software renovation oriented research project CaLCE: “Computer-Aided
Life Cycle Enabling”. This project is financed by the Dutch Ministry of Economic
Affairs and aims at the development of tooling to improve the overall quality of systems
deployed in the financial setting.

1.2 Related work

Some applications (e.g. the KDE and Gnome window managers) allow the configura-
tion of a foreign editor. Whenever a body of text needs to be edited, the application
executes the configured editor and waits for the user to complete the editing session.
During this session, there is no interaction between the main application and the for-
eign editor: the editing session is unguided. In some applications instantiations of ex-
ternal editors can be embedded. Some examples are KDE’s filemanager konqueror



and email reader kmail which can embed instances of a specially crafted version of
the Vim text editor. In these cases, the host application (kmail) encapsulates the editor
(kvim) and shows its window as if the editor were part of the application. This gives
the user the feeling that his favorite editor is integrated in the application, even when
this integration is only visual and there is no real interaction between host application
and editor.

Our focus is not so much on the visual integration achieved by embedding the editor
instances. Instead we emphasize functional interaction during the editing session.

Another way to look at application-editor interaction is to look at the editor as the
main application, and to view external tools as subordinates of the editor. Especially
users of the Emacs family of editors find ways to link their email reader, spell-checker,
or other popular application into Emacs by writing support glue in Emacs LISP.

2 Design

In any IDE it is common to have multiple simultaneous editing sessions, as users start
and finish editing, switching from one file to another. To take care of any administrative
issues we have to deal with the following tasks:

Managing Using multiple editing sessions requires administration of open sessions
and addressing these editing sessions.

Executing Supporting several editors almost certainly results in different startup pro-
cedures for each editor. We provide an open and generic architecture for supporting
several editors.

Marshalling We need full interaction with the supported editors, which means that
data has to be transferred from the application to the editor instance and vice versa.

We first have a look at the requirements (Section 2.1) and then split the design into
editor-independent (Section 2.2) and editor-specific (Section 2.3) details, and we show
how the components connect (Section 2.4) to form our multiplexing editor architecture.

2.1 Requirements and considerations

Given our experience with editing issues in the Meta-Environment (Section 1.1) we are
interested in a solution which is:

Noninvasive We are strongly determined not to edit the source code of any particular
editor itself.

Simple Keep the number of methods in the editor interface low: 10 rather than 100

methods. Prefer implementation of these methods in established programming lan-
guages (e.g. C or Java), rather than the editor’s (sometimes arcane) domain specific
scripting language.

Open Both in terms of platform and language:
– Platform independence: although designed for a Unix environment, the im-

plementation should be independent of whether this is e.g. Linux, SunOS, or
Windows/Cygwin;



– Language independence: the architecture does not dictate any particular pro-
gramming language for the editor connectors.

From the Meta-Environment point of view, we are at least interested in the following
interesting editor actions and events:

Menu We want to add menu items in the editor which, when selected by the user, are
forwarded to the environment where they are handled.

Cursor Cursor positioning and text highlighting can be directed by the environment
(model) and rendered in the editor (view).

Modification The editor notifies the environment of any changes the user makes to the
file.

Save/Load The environment can request the editor to save its contents or re-read them
from the file system.

We start out with this restricted set, but we keep the design open to allow for later
extensions. The less demands, the more editors we can potentially support. If for exam-
ple an editor offers no support to add user-defined menus, we cannot set them up from
another application either. Although we could patch the editor sources to add menu
support we deliberately refrain from doing so.

2.2 Editor-independent design

The editor-independent design describes a generic way of managing and communicat-
ing with editor instances. Without knowledge of the actual editor instance, one can
provide an abstract level of communication by defining a common interface which pro-
vides all necessary functionality to fulfill the requirements given in Section 2.1. A tool
that implements this design takes care of managing editing sessions, including start-
ing and shutting down sessions, and communication with these editing sessions. The
MULTIPLEXER described in Section 3.1 is a tool that implements this.

2.3 Editor-specific design

Managing editing sessions can be done in a generic way, but actual communication
and execution of editor instances has to be editor specific. This communication can be
done in various ways. While Vim makes use of an arcane syntax-based communica-
tion protocol via the commandline, OpenOffice for example can be controlled by using
an extensive API. These differences lead to different design implementations for dif-
ferent editors. To prevent changes to the MULTIPLEXER for every editor that has to
be supported we introduce a connector (see Section 3.2) mechanism which separates
communication with the actual editor instances from managing the editing sessions.
For each supported editor there has to be a corresponding connector. All editor-specific
communication details are known to this connector, while the MULTIPLEXER can be
implemented in a generic way. The generic interface provided by the MULTIPLEXER

has to be implemented by every connector.



2.4 Execution models

No two editor implementations are the same, and they are often written based on dif-
ferent designs. Editors based on the GNU Emacs philosophy prefer to interact with
external processes only if they are executed by the editor. Other editors are more easily
controlled by an external process.

We accomodate for this difference by allowing two execution models. Either the
MULTIPLEXER first launches the connector which launches the editor, or the MULTI-
PLEXER launches the editor instructing it to immediately launch the connector.

Independent of the execution model, the final state is the same: the MULTIPLEXER

communicates with the editor via a dedicated connector (Figure 2).

Connector Connector

Emacs Vim

StartupStartup

Multiplexer

Application

Fig. 2. Overview showing how editors are connected to an application.

3 Implementation

Given the design from Section 2, we describe the MULTIPLEXER which contains the
editor-independent implementation in Section 3.1. This MULTIPLEXER invokes inter-
face methods which in turn are implemented in editor-specific connectors which are
detailed in Section 3.2. Finally, we explain how we glue it all together in Section 3.3.

3.1 Editor Multiplexer

The editor MULTIPLEXER manages multiple simultaneous edit sessions by assigning
each session a unique ID. Subsequent calls to the edit session carry this ID as one
of the call’s parameters. This allows the MULTIPLEXER to uniquely identify to which
connected editor the request needs to be forwarded.

The MULTIPLEXER is currently implemented as a TOOLBUS tool, written in the
C programming language. The TOOLBUS coordination architecture is a middleware
layer with a process algebra based scripting language. [9] offers a comprehensive ex-
planation of the TOOLBUS scripting language. Because the entire Meta-Environment
architecture uses the TOOLBUS coordination architecture, making the MULTIPLEXER

a TOOLBUS tool is the obvious choice. For applications that do not use the TOOLBUS,
an implementation in the form of a C library would be equally feasible.



The choice for C as the implementation language was pragmatic. C offers direct
access to operating system functionality such as process duplication through the use of
the fork system call, execution of external processes using exec and has additional
low level support for sockets, pipes and file descriptors. Although we also experimented
with an implementation in Java during research in the context of connecting the Eclipse
IDE editor [10], we opted for C’s easy link to operating system functionality.

We show a simplified TOOLBUS interface definition of our MULTIPLEXER.

01 tool multiplexer is { command = "./editor-multiplexer" }
02
03 process EditorMultiplexer is
04 let
05 EM: multiplexer,
06 Editor, Filename: str,
07 SessionID, SL, SC, EL, EC: int,
08 MainMenu, SubMenu: str
09 in
10 execute(multiplexer, EM?)
11 .
12 (
13 rec-msg(edit-text(Editor?, Filename?))
14 . snd-eval(EM, Editor, Filename))
15 . rec-value(EM, SessionID?)
16 . snd-msg(edit-text(Editor, Filename, SessionID))
17 +
18 rec-msg(set-focus(SessionID?, SL?, SC?, EL?, EC?))
19 . snd-do(EM, set-focus(SessionID, SL, SC, EL, EC))
20 +
21 rec-event(EM, menu-selected(SessionID?, MainMenu?, SubMenu?))
22 . snd-msg(menu-selected(SessionID, MainMenu, SubMenu))
23 )
24 * delta
25 endlet

This example is limited to showing the execution (line 10) of the previously de-
clared multiplexer tool (line 01). Following the execution is a looping construct (lines
12-24). During each iteration exactly one of the declared scenarios can occur. First, a
request to start a new session is handled (lines 13-16). Second a request to set the fo-
cus to a particular region delimited by start-line, start-column, end-line and end-column
(lines 18-19) to any existing editor can be handled. Finally, a menu event can come in
from one of the connected editors (lines 21-22).

Applications that do not use the TOOLBUS, could use e.g. pipes, sockets or library
calls to communicate with the MULTIPLEXER.

3.2 Editor Connectors

For each supported editor, we implement a small connector that translates the editor-
independent interface calls into the editor specific implementation. These connectors
are necessary because each editor has its own unique scripting facilities or programming
language (Vim uses Vim script, GNU Emacs uses Emacs Lisp), and because commu-
nication with each editor is usually handled in a slightly different way. We describe the
connectors we implemented for Vim, GNU Emacs, and for a proprietary implementa-
tion of an editor in JFC/Swing.



Vim The Vim connector is implemented partially in C and partially in Vim’s scripting
language. The C functions implement the text editor interface. Commands from the
MULTIPLEXER to the editor are sent using Vim’s remote scripting feature.

For example, the implementation of the setCursor(int offset) method
looks like this:

01 static void gotoCursorAtOffset(int offset) {
02 char cmd[BUFSIZ];
03 sprintf(cmd, ":goto %d", offset);
04 sendToVim(cmd);
05 }

Events from the editor to the MULTIPLEXER, are initiated by Vim. E.g. Vim is
instructed to forward buffer changes resulting from user editing by means of the Vim
hook called BufWritePost:

01 func! EnableModificationDetection()
02 autocmd BufWritePost * :call BufModified()
03 endfunc

where BufModified is a function (in Vim script) that forwards this event to the MUL-
TIPLEXER.

Currently, the editor-specific glue for Vim is expressed in 501 lines of C code, and
77 lines of Vim script.

GNU Emacs Similar to the sendToVim function, sendToEmacs is used to commu-
nicate from the MULTIPLEXER to GNU Emacs. The difference is that where Vim lacks
a regular communication channel and we had to resort to using its remote scripting
feature, with GNU Emacs we can communicate using a a pipe.

01 static void sendToEmacs(int write_to_editor_fd, const char *cmd) {
02 write(write_to_editor_fd, cmd, strlen(cmd));
03 write(write_to_editor_fd, "\n", 1);
04 }

The communication channel may be simpler in this version, but not all comes easy
when dealing with GNU Emacs. The initial scripting necessary to setup the connector
is programmed in Emacs LISP:

01 (defun init (args)
02 (setq emacs-connector
03 (let ((process-connection-type nil))
04 (apply ’start-process "emacs-connector" "*Meta*" "emacs-connector"
05 (split-string args))))
06 (set-process-filter emacs-connector ’multiplexer-input)
07 (process-kill-without-query emacs-connector)
08 (define-key global-map [mouse-1] ’mouse-clicked)
09 (add-hook ’after-change-functions ’buffer-modified () t)
10 )

Lines 02-08 execute the connector and register the LISP function multiplexer-
input as input handler for the connector. Line 10 registers a mouse-click listener, and
line 11 registers the buffer-modified function so it gets invoked whenever user
editing causes the buffer to change.

Currently, the editor-specific glue for GNU Emacs is expressed in 436 lines of C
code, and 108 lines of Emacs LISP.



JFC/Swing Editor As an experiment and possible extension to the ASF+SDF Meta-
Environment, we also created an editor based on the GUI classes available in JFC/Swing.
Again similar to the previous implementations, we were able to connect this Java edi-
tor to the MULTIPLEXER. We do not show implementation details, but it is worthwhile
to mention that the connection to this editor is based on sockets, rather than pipes (as
we used for the GNU Emacs connector). Although we could have used the commonly
accepted route where the standard input and output streams are sacrificed and used for
communication via a pipe, we opted for the socket approach, just to add this route to
our repertoire.

Currently, the editor-specific glue for our JFC/Swing editor is expressed in 411 lines
of C code, and a 5 line shell script to invoke java with the correct classpath for the editor.

3.3 Glueing it all together

Now that we have the editor-independent MULTIPLEXER, and the editor specific con-
nectors, we can finally glue them together to get a working system. We describe how
the MULTIPLEXER executes and communicates with an editor.

Executing an editor The MULTIPLEXER executes the requested editor as follows. For
each editor, we write a small piece of (C) code that is loaded as a dynamic library.
This mini library contains a single startup function with three parameters: the file-
name to be edited and the two file descriptors to be used for communication with the
MULTIPLEXER. The startup function for the Vim editor looks like this:

01 void startup(const char *filename, int readFromFD, int writeToFD) {
02 char fromMultiFD[10], toMultiFD[10]; /* file descriptors as string */
03
04 sprintf(fromMultiFD, "%d", readFromFD);
05 sprintf(toMultiFD, "%d", writeToFD);
06
07 execlp("gvim-connector", "gvim-connector",
08 "--read_from_multiplexer_fd", fromMultiFD,
09 "--write_to_multiplexer_fd", toMultiFD,
10 "--filename", filename,
11 NULL);
12
13 perror("execlp:gvim/startup");
14 exit(errno);
15 }

The MULTIPLEXER invokes startup by using the dlopen and dlsym system
calls (not shown here) for interacting with dynamic libraries. We thus extend the MUL-
TIPLEXER with a single function per specific editor.

In the startup function, we choose one of the two execution models described
in Section 2.4. For Vim we execute (lines 07-11) the connector, thus following the
connector first execution model.

For GNU Emacs, we have a similar startup function. Only it was more conve-
nient to execute emacs first and have it fire up the connector instead. GNU Emacs is
then told to load the editor-specific startup script (in this case written in Emacs LISP)
and to begin by executing the function init:



01 void startup(const char *filename, int readFromFD, int writeToFD) {
02 char evalargs[BUFSIZ];
03 sprintf(evalargs,
04 "(init \"--read_from_fd %d --write_to_fd %d --filename %s\")",
05 readFromFD, writeToFD, filename);
06
07 execlp(EDITOR, EDITOR, filename, "-load", "gnu-emacs.el",
08 "-eval", evalargs, NULL);
... /* error handling code omitted */
11 }

Communicating with an editor Depending on the functionality offered by each spe-
cific editor, we use different means of setting up a communication channel with the
editor. We have used different channels ranging from a pipe (in GNU Emacs), to a
socket (in the JFC/Swing editor), to the more esoteric remote scripting feature of-
fered by Vim.

Independent of the type of the available communication channel, we use the same
technique to marshal data over this channel. Instead of writing ad-hoc marshalling and
de-marshalling code in the MULTIPLEXER and the connectors, we use APIGEN [11].
APIGEN takes as input an abstract data type description (ADT) and generates a C library
or Java jar-file containing a.o. set, get and serialization methods.

Each command to and event from the editor is formalized in the text editor ADT.
From this specification APIGEN generates the API implementation which we use to
(de-)marshal communication between the MULTIPLEXER and editor.

4 Discussion and Future work

We have implemented a framework that allows reuse of off-the-shelf editors such as
GNU Emacs and Vim in the ASF+SDF Meta-Environment. By implementing as much
as possible of this framework in a generic, editor-independent way (our MULTIPLEXER),
we can easily and rapidly add other editors to our environment. Deploying code gener-
ation techniques (APIGEN), and an available (programmable) middleware layer (TOOL-
BUS) ensures the solution is cheap in maintenance.

Our editing solution is noninvase: we never change any editor internals, simple: only
a handful of lines of code in the editor’s own scripting language are needed, and open:
our editing support has been tested on various Linux platforms, and we have both C and
Java connectors.

Our editing framework was primarly designed for use in the Meta-Environment,
which relies heavily on the TOOLBUS as its middleware layer. However, our contribu-
tion is not limited to using the TOOLBUS, and we plan to offer our results for use in a
non-TOOLBUS setting, as a downloadable package.

Another direction of interest is figuring out in which ways we can expand the text
editor interaction. We have already experimented with syntax highlighting (i.e. one tool
describes which part of the text gets which font attributes and colour and the render-
ing is done by the text editor), and structured editing, but conceivably several more
applications can benefit from our support.

Obviously, the more complicated the things we demand, the fewer editors we will
be able to fully support. Vim, for example lacks atomic functionality to colour a specific



region of characters, although it does offer complex syntax highlighting. This leads to
the following question: what is the set of text editing primitives small enough to be
covered by almost any editor, but large enough to be useful in most applications that
require editing?

Finally, as its name states, one of the MULTIPLEXER’s task is multiplexing simulta-
neous editing sessions. In a coordination architecture such as the TOOLBUS, the mul-
tiplexing concern could be applicable to other tools as well. If this notion were lifted
to a TOOLBUS primitive, any setting that launches multiple instances of a tool with the
same interface could possibly benefit.

References

1. Stallman, R.M.: Emacs the extensible, customizable self-documenting display editor. In:
Proceedings of the ACM SIGPLAN SIGOA symposium on Text manipulation. (1981) 147–
156

2. Moolenaar, B.: Vim is a highly configurable text editor built to enable efficient text editing.
Vim 6.3 is available for download from http://www.vim.org (2004)

3. van den Brand, M.G.J., van Deursen, A., Heering, J., de Jong, H.A., de Jonge, M., Kuipers,
T., Klint, P., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser, E., Visser, J.: The ASF+SDF
Meta-Environment: a Component-Based Language Development Environment. In Wilhelm,
R., ed.: Compiler Construction (CC ’01). Volume 2027 of Lecture Notes in Computer Sci-
ence., Springer-Verlag (2001) 365–370

4. Klint, P.: A meta-environment for generating programming environments. ACM Transac-
tions on Software Engineering and Methodology 2 (1993) 176–201

5. van den Brand, M.G.J., Iversen, J., Mosses, P.D.: An Action Environment. In: Electronic
Notes in Theoretical Computer Science, Elsevier (2004) to appear.

6. van den Brand, M.G.J., van Deursen, A., Klint, P., Klusener, S., van der Meulen, E.A.: Indus-
trial applications of ASF+SDF. In Wirsing, M., Nivat, M., eds.: Algebraic Methodology and
Software Technology (AMAST’96). Volume 1101 of Lecture Notes in Computer Science.,
Springer-Verlag (1996) 9–18

7. Klusener, S., Lämmel, R.: Deriving tolerant grammars from a base-line grammar. In: Pro-
ceedings of the International Conference on Software Maintenance, IEEE Computer Society
(2003) 179–189

8. Veerman, N.P.: Revitalizing modifiability of legacy assets. Journal of Software Maintenance
and Evolution: Research and Practice 16 (2004) 219–254

9. Bergstra, J., Klint, P.: The discrete time ToolBus – a software coordination architecture.
Science of Computer Programming 31 (1998) 205–229

10. van den Brand, M.G.J., de Jong, H.A., Klint, P., Kooiker, A.T.: A language development
environment for eclipse. In: Proceedings of the 2003 OOPSLA workshop on eclipse tech-
nology eXchange, ACM Press (2003) 55–59

11. de Jong, H.A., Olivier, P.A.: Generation of abstract programming interfaces from syntax
definitions. Journal of Logic and Algebraic Programming (JLAP) 59 (2004) 35–61 Issues
1–2.


